import pandas as pd # Print the values of homelessness print(homelessness.values) [['South Atlantic' 'West Virginia' 1021.0 222.0 1804291] ['East North Central' 'Wisconsin' 2740.0 2167.0 5807406] ['Mountain' 'Wyoming' 434.0 205.0 577601]] # Print the column index of homelessness print(homelessness.columns) Index(['region', 'state', 'individuals', 'family_members', 'state_pop'], dtype='object') # Print the row index of homelessness print(homelessness.index) Int64Index([0, 1, 2, 3, 4, ..., 49, 50], dtype='int64') print(sales['date'].max()) # Import NumPy and create custom IQR function import numpy as np def iqr(column): return column.quantile(0.75) - column.quantile(0.25) # Update to print IQR and median of temperature_c, fuel_price_usd_per_l, & unemployment print(sales[["temperature_c", "fuel_price_usd_per_l", "unemployment"]]. agg([iqr, np.median])) temperature_c fuel_price_usd_per_l unemployment iqr 16.583 0.073 0.565 median 16.967 0.743 8.099